اشعة المستوي يقصد بها تنتمي للمستوي ليست عمودية على المستوي
هل هكذا قصدك
اذا كان هكذا عندما يكون عمودي على احد اسعة المستوي فهو عمودي على كل الاشعة الموازية للشعاع الموجود في المشتوي
رغم اني لم افهم سؤالك جيداا
Loukan yo3amid koul achi3at al mostawi ma3netha raho nadimi
اثبتي بانه مرتبط خطيا مع الشعاع الناظمي للمستوي
و الله اعلم
يجب ان يكون مرتبط خطيا مع شعاعين من المستوي على الاقل لكي يكون يعتمد المستوي هذه قاعدة
أدا فذرني،أختي حطي التمرين كامل
يقول السؤال لدينا شعاع يعامد مستوي
اثبت ان هذا الشعاع يعامد كل اشعة المستوي |
مثلا يقولك لدينا النقط a b c من المستوي p أثبت أن الشعاع u يعامد المستوي p ؟ هنا تبيني أنه يعامد م جميع تلك الاشعة وهنا تبيني بلي uab=0و uac=0وubc=0 ومنه u عمودي على جيع اشعة المستوي
اذا كان هذا الشعاع ناظم للمستو فهو عمودي على كل الاشعة التي تنتمي (تنطبق ) على هذا المستو
يقول السؤال لدينا شعاع يعامد مستوي
اثبت ان هذا الشعاع يعامد كل اشعة المستوي |
ارجو المعذرة لكن يبدو السؤال خاطئ والله اعلم…لانه تقول القاعدة اذا كان هناك شعاع يعامد شعاعين غير مرتبطين خطيا من مستوي فانه عمودي على كل المستوي ..والعكس اذا كان لدينا شعاع عمودي على مستوي فانه عمودي على شعاعين غير مرتبطين خطيا من هذا المستوي..
وبما انه في السؤال صرح بأن هذا الشعاع عمودي على المستوي فالجواب واضح دون اثبات انه عمودي على جميع اشعة المستوي الغير مرتبطة خطيا….